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SECTION I
INTRCDUCTION

Viscous-inviscid interaction flow fields are common occurrences found
both on high Mach number flight vehicles and in supersonic or transonic turbo-
machinery. In general, the interaction may result either from the impingement
of a shock wave upon a boundary layer or from a boundary layer developing
along a compression surface. The resulting flow field is a complex phenomenon
governed by the mutual interaction of a viscous inner shear layer and a
nominally inviscid outer flow. Since viscous-inviscid interactions may lead
to high drag losses, loss of control effectiveness, and very high local
heating rates, and since such interactions commonly occur on high Mach number
flight vehicles, a method to predict the interaction flow field accurately
would be a valuable asset to the vehicle design team. The interaction flow
field cccurring in most cases of practical interest involves a turbulent
boundary layer and, thus, a calculation procedure capable of accurately
modeling turbulent boundary layer development should form the basis of the
interaction prediction procedure.

Following Prandtl,the now classical method of solving viscous boundary
layer-type problems first calculates a streamwise pressure distribution from {
purely inviscid considerations and then calculates the boundary layer develop-
ment under the influence of this inviscid pressure distribution. No attempt
is made to correct the inviscid pressure calculation for viscous effects |
orisinating in the boundary layer region. Obviously, such a two-step pro-
cedure can be valid only if the pressure distribution calculated ignoring
viscous effects is a sufficiently sood approximation to the pressure dis-
tribution which actually occurs. In many cases of practical interest, the
inviscid pressure distribution is an excellent approximation to physical
reality and in these cases the classical two-step procedure is valid. How=-
ever, in certain flow situations which are termed strong interaction flows,
the viscous displacement effects near the body surface are sufficiently large
‘o cause the pressure distribution calculated ignoring viscous wall effects
to be in serious error and in these cases the classical two-step boundary
layer calculation procedure is invalid. The shock wave boundary layer
interaction represents a common type of strons interaction flow. For such
a flow, a prediction procedure which can be used with confidence must account
for the mutual interaction between the inner viscous flow and the outer
wminally inviseid flow.

lost interaction flow field procedures which have been developed and are
discussed in the open literature have extended classical boundary layer
theory to account for the mutual interaction phenomena. Under this
approach the boundary layer equations which represent the inner flow field
are solved similtaneously with an equation representing the outer flow field




thus including the required mutual interaction in the solution process.

Most strong interaction solutions of the boundary layer equations are based
conceptually upon the original work of Crocco and Lees (Ref. 13) as modi-
fied by Lees and Reeves (Ref. 27). In brief, Lees and Reeves solved a set
of integral laminar boundary layer equations under the constraint that the
flow angle at the outer edge of the boundary layer as determined by the
boundary layer equations be equal to the flow angle at the outer edge of the
boundary layer as determined by the inviscid flow field equations. This
constraint was expressed through an equation relating the outer edge flow
angle as determined by the continuity equation to the angle determined by
the Prandtl-Meyer law. The use of an additional equation allowed the stream-
wise static pressure distribution to be calculated simultaneously with the
boundary layer development and, thus, the streamwise static pressure dis-
tribution emerged as part of the solution as it should. The Lees and Reeves
procedure resulted in fairly good predictions of static pressure through the
interaction region for laminar boundary layer development on adiabatic walls;
however, the prediction of skin friction, although qualitatively correct,
showed sirnificant quantitative disagreement with experimental data. The
Lees and Reeves integral theory was extended to nonadiabatic walls by
Klineberg and Lees (Ref. 24) and Holden (Ref. 22).

Although the analyses of Refs. 27, 22 and 24 have proven capable of
predicting the streamwise pressure distribution through the interaction
region, they are all based upon integral solutions of the equations and,
thus, are limited in their generality. A more general solution for the
interaction problem has been developed by Reyhner and Flugge-Lotz (Ref. 41)
who replaced the integral boundary layer equations with the boundary layer
partial differential equations of motion thus eliminating the constraints
imposed by the profile assumptions required by integral solutions. Since
the boundary layer equations calculated by spatial marching procedures are
unstable in regions or reversed flow, the finite difference algorithm was
modified so that in the separated flow region the streamwise convective
terms were ignored or given a false positive convection velocity to main-
tain numerical stability. Being a full finite-difference solution rather
than an integral solution, the Reyhner and Flugge-Lotz procedure is more
ceneral than integral calculation procedures; however, like integral pro=-
cedures, the Reyhner-Flugge-ILotz procedure is still confined to laminar
flow.

A solution of the turbulent boundary layer equations for strong inter-
actions has been presented by Bertke, Werle and Polak (Ref. 5) who solved a
set of equations originally developed by Werle and Vatsa (Ref. 55) for laminar
flows. The method of Ref, 55 is apseudo-time relaxation scheme that allows adirect
specification of the downstream boundary conditions without having to adjust
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initial parameters. A turbulence model that had been developed for attached

weak interaction boundary layer flows was used., When this method was applied

to the turbulent free interaction problem, the calculated plateau pressures

were found to be approximately 30 percent higher than available data correla-
tions., Bertke, Werle, and Polak attributed the discrepancy in predicted

plateau pressure to limitations of the turbulence model used. A broad review

of shock wave-boundary layer interaction solutionshas been compiled by Hankey (Ref. 21).

Although until recently numerical viscous=-inviscid interaction
calculations were based almost entirely upon extended boundary layer pro-
cedures, the rapid development of both numerical techniques and computer
capability now have made it practical to apply Navier-Stokes calculation
procedures to the interaction problem. Since the Navier-Stokes equations
represent the exact equations of motion, they contain no approximations
other than those made in connection with turbulence modeling. For example,
the assumption of constant pressure at any streamwise station which is
inherent in most boundary layer procedures and which may be in serious
error in supersonic flow is relieved in the Navier-Stokes approach. Further-
more, the approximation of the convective terms in separated flow regions
which is necessary for numerical stability in boundary layer calculations
is not required in Navier-Stokes calculations. Thus, the basic equations
used to solve the interaction problem via a Navier-Stokes calculation are
not corpromised by approximations which are required for a successful
boundary layer solution.

The advantages of the Navier-Stokes solution must be balanced acainst
certain disadvantages such as code complexity, code run time and code
storace requirements. Navier-Stokes calculation procedures in general
require more code development time than do boundary layer procedures. In
addition, Navier-Stokes procedures may require increased computer storage
and increased computer run time to obtain a successful solution. A consid-
eration of both the advantages and disadvantages of Navier-Stokes solutions
indicate that the potentially increased accuracy of this approach may
well balance out the increased requirements in computer storage and run
time. With these considerations in mind it seems reasonable to continue
development of both approaches to the interaction problem at the present
time.

Solutions of the Navier-Stokes equations for shock wave=-turbulent
boundary layer flow interactions have been presented recently by a variety
of authors including Wilcox (Ref. 56), Baldwin and MacCormack (Ref. 2), and
Shaneg and Hankey (Ref. 47). In Ref. 56, Wilcox combined an explicit




first-order finite-difference scheme with Saffman's turbulence model

(Ref. L) to predict two-dimensional turbulent supersonic flows with
separation. Although Wilcox was successful in obtaining flow field solu-
tions, the predicted surface pressure distribution disagreed sigrificantly
with experimental data. In a more recent work, Baldwin and MacCormack
(Ref. 2) applied MacCormack's two-step second-order explicit Navier-Sioke
method to the shock wave-turbulent boundary layer interaction problem.
Although both a mixing length turbulence model and a two-equation trans-
port model of turbulence were used, neither turbulence model produced flow
fields that agreed well with measurements. Shang and Hankey applied the
explicit two-dimensional time-dependent method of MacCormack to the inter-
action flow field problem using an eddy viscosity model which allowed for a
lag inthe response of the turbulence to the sudden, severe adverse pressure
rradient that is characteristic of strong interacting separating boundary
layers. A rate relation was introduced to decay the eddy viscosity expon-
entially from the value at the start of the interaction toward the local
equilibrium value with a time scale correlated to the boundary layer thick-
ness. Utilizing the relaxation model for eddy viscosity, Shang and Hankey
obtained predictions of a series of compression corner flows which were in
cood agreement with the experimental data of Law (Ref. 26). More recently,
Chang, Hankey and Law (Ref. 48) have compared predictions for a series of
ncident shock wave-boundary layer interactions with experimental data.
Asain, good agreement was obtained between the calculations and the experi-

ment .

The Navier-Stokes solutions discussed in the previous paragraph were all
based upon an explicit dii'ference scheme for solving the unsteady form of
the governing equations. An initial flow field is assumed and the calcula-
tion then proceeds in time until a steady state is reached. However, explicit
numerical procedures of this type are subject to one or more stability
restrictions on the size of the time step relative to the spatial mesh size.
These stability limits usually correspond to the well known Courant-
Fredricks-Lewy (CFL) condition and in some schemes to an additional stability
condition arising from viscous terms. These stability restrictions can lower
computational efficiency by imposing a smaller time step than would be
otherwise desirable. Since the restriction becomes more and more stringent
as the spatial grid is refined, the restriction can become particularly
burdensome in the calculation of a turbulent boundary layer where a very
fine mesh near the wall may be required. In contrast to most explicit
methods, implicit methods tend to be stable for large time steps and
therefore offer the prospect of substantial increases in computational
efficiency. When the present work was initiated, no implicit Navier-Stokes
procedure for predicting the shock wave-boundary layer interaction flow
field had been reported in the open literature and in view of the potential
benefits associated with implicit methods, it was decided to apply an

Ly
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implicit technique to this problem. This application represents a feasibility
study to determine if the potential benefits of implicit methods could be
realized in an interaction problem. If it appears that substantial benefits
could be realized, then future work could be aimed toward developing the
implicit interaction solution procedure as a desien tool.

Since the initiation of the present work,a technique in which viscous

has been presented by MacCormack (Ref. 30). The present Navier-Stokes
investication centers on a fully implicit procedure, the Multi-dimensional
Implicit Nonlinear Time-dependent (MINT) technique, developed by Briley
and McDonald (Rof. a). The method has been extended to turbulent flow by
Briley, MeDonald and Gibeling (Ref. 10) and to flow in combustors by
Gibelins, McDonald and Briley (Ref. 18). 1In the Navier-Stokes portion

of the present effort a two-dimensional version of the MINT procedure

is applied to the shock wave-boundary layer interaction problem.

The present report covers all work performed under the subject contract
and can be divided into two parts. The first portion concerns the boundary
layer approach; this represents the major portion of the effort done under
the subject contract. Under the boundary layer approach, a well-proven weak
interaction boundary layer procedure was modified to allow for strong inter-
action solutions. The modifications include (i) the incorporation of an outer
flow analysis, (ii) the revision of the governing equations to allow for flow
in separated regions, and (iii) the revision of the turbulence model. The
original weak interaction solution procedure, the modifications made under
the current effort, and sample calculations are described in the following
sections. The second portion of the report concerns the Navier-Stokes
approach. The governing equations and the numerical method are discussed and
sample calculations are presented.




SECTION II
DISCUSS1ON

[HE BOUNDARY LAYFR APPRCACH

'he basis for the strong interaction boundary layer calculations described
in this report is a well-proven weak interaction boundary layer procedure which
has been used to compute successfully a wide variety of laminar, transitional,
and turbulent boundary layers. A complete, detailed description of the procedure

as well as an extensive comparison between predictions and data can be found in

Refs. 25, 33, 34 and 46. The present discussion first briefly describes the
weak interaction procedure and then proceeds to detail the modifications re-

i

quired for a strong interaction code. These modifications include the incor-
poration of an outer flow analysis into the calculation, the modification of
the equations in the reversed flow region, and the modification of the turbu-
lence model within the separation bubble. Next, a discussion of the cause and
characteristics of the so-called branching solutions obtained with the strong
interaction code is presented. The validity of the branching solutions along
with the characteristics of free interactions are presented and the behavior of the
branches after encountering a corner or an incident shock wave are demonstrated.
Next, attention is focused upon the downstream boundary condition problem. The
boundary layer calculation approach used to solve the strong interaction problem
requires the downstream boundary conditions to be satisfied through an iterative
'shooting' procedure. In this iterative procedure a sequence of initial value
problems is solved until the solution at the end of the strong interaction region
is compatible with specified downstream boundary conditions. The initial value
problems within the sequence differ in the value of a free parameter. Different
values of the free parameter lead to different branching solutions and ulti-
mately to different flow fields at the downstream flow field boundary. The
choice of the free parameter is discussed and the rationale for using one
variable for the parameter when the solution is far from convergence and

another variable for the parameter when the solution is near convergence is
rresented. Finally, the results of applying the methodology outlined above

are presented. Both laminar and turbulent results are presented along with

the details of the modified turbulence model that was used in the successful
turbulent strong interaction calculations.

Weak Interaction Boundary Layer Procedure

The weak interaction solution, upon which the current work is based, has
been developed over a veriod of years and details of the procedure are presented
in Refs. 25, 33, 34 and 46, The procedure itself solves the steady state
boundary layer equations for laminar, transitional, and turbulent flow. As
shown by wany authors (for example, Schubauer and Tchen (Ref. 45)), for two-
dimensional or axisymmetric flows, steady in the mean, the boundary layer
approximations to the momentum, energy, and continuity equation become:
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In Eqs. (1) through (3) x and y are coordinates in the streamwise and trans-
verse directions, u and v are velocity components in the x and y directions,

p is density, P is pressure, C_ is specific heat, T® is total temperature, r

is the radius of curvature for an axisymmetric body, and the exponent o is zerc
for two-dimensional flows and unity for axisymmetric flows. By definition, the
effective shear stress, T, and the effective heat transfer, @ are given as:
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where v is viscosity, k is thermal conductivity, T is static temperature.

In Egs. (1) through (5) overbars indicate averaged quantities and primes in-
dicate fluctuating quantities. The equations are valid for laminar, transi-
tional, or turbulent flows; obviously, for laminar flows the primed quantities
are zero. In the case of turbulent and transitional boundary layers, it is
convenient to represent the contribution of the apparent turbulent stress, T,
to the total shear stress, T, by an effective turbulent viscosity, vp. In an
analogous manner, the turbulent contribution to the total heat flux, Q is
represented by an effective turbulent conductivity, kg, such that

- dU = y 1 [l -

PV T dy 2N (6)
G AR
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and by analogy to laminar flow a turbulent Prandtl number, PrT, can be defined
as

Pre 2 5 Cp vr/Ks (8)

At this point, v and kl simply represent definitions and in no way limit the
subsequent turbulence modeling. When Eqs. (4) through (7) are substituted into
Eqs. (1) and (2), the resulting boundary layer momentum and energy equations
take the form:
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In deriving Eq. (10) use has been made of the definition of total temperature

0 u?

T =T+1-¢-; (11)

In situations in which the flow is laminar, Egs. (3), (9), and (10) are
solved with v, = O to determine the boundary layer development. When the flow
is transitional or turbulent, it is necessary to model vp and Prp. The speci-

fication of the turbulent viscosity, vp, and the turbulent Prandtl number, Prp
is carried out through the turbulence model described in detail subsequently.

In the present procedure the equations are solved by using the continuity
equation to eliminate the explicit appearance of pv from the momentum and energy
equations. Then in the weak interaction case where the streamwise pressure
gradient, P(x) is specified, the momentum and energy equations, in conjunction
with an equation of state and equations governing Vo and Pr_, form a closed set
of nonlinear, parabolic, partial differential equations which can be solved
upon specification of boundary conditions. Obviously, in the strong inter-
action case where the streamwise pressure gradient, P(x) is not specified
a priori but must emerge from the solution, an additional relation is required
to determine the static pressure distribution.

The wall and free-stream boundary conditions employed in the solution are

given by:
o 5 =0 _ aT
pv=(pv)w.u-O,T -Tworo—y-:o (12)
:
:
at the free-stream, y ———— @
i pu - Pe Ye
; (13)
i TO=T‘°
8




The subscripts 'w' and 'e' denote wall and free-stream conditions, respectively.
The initial conditions for the problem are set by specifying the initial boundary
layer displacement thickness, 6*, and assuming the initial development is sim-
ilar in the dimensionless coordinate, T, where

y
= 5% (_'114-)

The numerical procedure used to solve the .« erning momentum and energy
equations is a Hartree-Womersley approach in which streamwise derivatives are
replaced by finite differences, the coordinate normal to the wall is nondim-
ensionalized, and a stream function introduced. The resulting momentum eguation
is a third order nonlinear ordinary differential equation in the transverse
coordinate and the energy equation is a second order nonlinear ordinary differ-
ential equation in the same transverse coordinate. At each streamwise station
the nonlinear coefficients of each equation are estimated from the solution at
the previous station and the resulting linearized equations solved as two-poinc
boundary value problems. Appendix A describes the solution procedure in detail.

The fully-developed turbulence model used in the weak interaction procedure
was originally presented by McDonald and Camarata (Ref. 32) for two-dimensional
incompressible flow and has been extended to a variety of flow situations in
Refs. 25, 33, 34 and 46. The model is based upon a solution of the turbulence
kinetic energy equation which is a conservation equation derived from the Navier=-
Stokes equations by writing the instantaneous quantities as a sum of mean and
fluctuating parts. The ith Navier-Stokes momentum conservation equation
(i= 1,2,3, referring to the three coordinate directions) is multiplied by the
ith component of fluctuation velocity and the average of the resulting three
equations is taken. The three averaged equations are summed to obtain the
turbulence kinetic energy equation. The derivation of the turbulence kinetic
energy equation has been given by Favre (Ref. 17) for compressible flow and
approximated by Bradshaw and Ferris (Ref. 8) to boundary layer flows. Two
turbulence models are used in the current strong interaction calculations; the
first model is a modification of a Prandtl mixing length equilibrium turbulence
model. The second model is a modification of the turbulence kinetic energy
model presented in Refs. 25, 33, 34 and 46. The modifications are discussed
subsequently.

Modifications For Strong Interaction

Matching and Marching Procedures

Although the weak interaction boundary layer procedure described above
has successfully predicted the development of a wide variety of boundary layers,
it obviously requires as input a specified pressure distribution, P(x). In
weak interaction flows the pressure gradient can be obtained from an inviscid

——— . . : ' I“.............."i



calculation which ignores all viscous displacement effects. However, in strong
interaction problems, such as the shock wave boundary layer interaction, the
inviscid pressure distribution will be in significant error as the pressure
distribution and boundary layer development mutually affect each other. The
prediction of the boundary layer development and the pressure distribution using
a procedure which recognizes their mutual effects upon each other is the core

of the basic strong interaction problem.

The present effort follows the strong interaction approaches of Refs. 1k,
21, 24, 27 and 41 which introduce the additional condition tha” the boundary
layer flow angle must agree with the inviscid flow angle at some specified flow
locaticn. This condition gives rise to an additional equation which allows the
simultaneous prediction of the boundary layer development and the streamwise
static pressure distribution. From a straight-forward applicaticn of the con-
tinuity equation, it can be shown that within the boundary layer “he flow
angle, 8, at a distance T from the wall is given by

R - - 8) 9l \ -
MR e e . ()

where 6% the displacement thickness, p_ the edge (wake) density, U the edge
(wake) veiocity, a the wall angle, and x is the principal flow dirgction. Using
Eq. (15) the inner and outer flows can be matched anywhere between the wall and
the boundary layer edge; however, by matching at the displacement surface

(M = 6%), the second term on the right-hand side of Eq. (15) becomes identically
zero and the resulting expression becomes

tan 8 = %-?.4- a (16)

As can be seen from Eq. (15), the choice of location at which the flows
are to be matched is soméwhat arbitrary. Two locations which have been used
commonly are the boundary layer edge, §, and the displacement surface, &§%.
For relatively thick boundary layers, either choice represents a compromise.
If § matching is chosen, the entire viscous region is included below the
matching line; however, the region below the matching line also includes a
region of transverse pressure gradients which are ignored in the boundary
layer calculation. When §*¥-matching is used, the region below the matching
line is expected to contain negligible transverse pressure gradients; however,
significant viscous and rotational effects may be present above the matching
line. In the present effort §¥-matching was used.

10
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The boundary layer equations are solved by a forward marching procedure
in which the inner and outer flows are coupled at each step. The procedure
is an iterative one which first approximates the displacement thickness (or
edge flow angle from Eq. (16)) throuch an extrapolation of the solution ai
previous stations. The boundary layer momentum equation then is solved usins
the specified displacement thickness to obtain both the boundary layer flow
ficld and the edge flow conditions. Thus, for an assumed flow angle, the
viscous calculation predicts a certain edge velocity. Using an outer inviscid
flow relation and the boundary layer edge velocity, this flow angle is deter-
mined again and the two values of the flow angle are compared. If the two
flow angles agree within a tolerance, the outer and inner flows are considered
to be matched. If not, a new displacement thickness is assumed and the proce-
dure repeated. The modifications in the equations which allow specification
of §* for the boundary layer solution are presented in Appendix B.

After the momentum equation is matched with the outer flow law, the energy

equation is solved. The velocity, density, and temperature field are then
evaluated. The matching procedure is repeated at each streamwise step and
thus, a solution is produced by marching in the streamwise direction.

Quter Flow Analysis

As discussed above, the strong interaction procedure requires an inviscid
flow law which gives a unique relation between the flow angles and velocityv.
In the present study, the well-known Prandtl-Meyer relationship for flows
with waves of one family was used to describe the outer flow. Under the
Prandtl-Meyer relationship, the flow angle, w, and the Mach number, M, are
related by

o /%{_L mn',\/?y_;_'T (M2 - 1) - tan” Mz— | (17)

where vy is the ratio of specific heats. At hypersonic Mach numbers the tangent-
wedge relation can readily be substituted for the Prandtl-Meyer relation and,
in fact, if desired, the viscous procedure can be coupled to a supersonic
inviscid flow code to predict as much of the outer flow field as desired.

Separated Flow

Since the boundary layer equations are solved by a forward marching
procedure, numerical instabilities are expected to be generated in the reverse
flow region when the reverse velocities are large or when the reverse flow
regionyextends over a large portion of the flow. As shown by several authors

4

€efey h‘f.’41), the source of this instability is in the streamwise convec-
tive term#, 1In the present effort, the instability is suppressed by the usual
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method of approximating the convective terms in the reversed flow region. In
so far as the energy equation is concerned, the streamwise convective term
was simply neglected in regions of reversed flow. Since the present solution
of the boundary layer equations is based upon a stream function formulation,
the suppression of the convective instabilities in the momentum equa®ion may
not be obvious and, therefore, the suppression of this term in the momentum
equation is now discussed in some detail.

In the present procedure a stream function formulation isused in which
the stream function, F, is of the form:

y PeUe (]F)

and the transverse velocity v is related to the stream function through applica=-
tion of the continuity equation

0pu  dpv
3% *ay 1O m)

which yields a relation of the form:

9p, i oF
v=—_r¢e’e {_-"-F)+
P —dx_ Pelle . (20)

In Eqs. (18) through (20) x and y are the streamwise and transverse coordinates,
u and v are the velocity components in the x and y directions, p is the density,
and the subscript 'e' indicates the quantity is evaluated at the edge of the
boundary layer. After a coordinate transformation of the form

X'=x n=y/8" (21)

is made, the partial differential equations are reduced to ordinary differ-
ential equations by approximating derivatives in the streamwise direction by
two point backward differences; i.e., for the variable F,

9F (x,7) _ Fix,q)-Flx-Ax,q)
ox Ox (22)

s can be seen from the original form of the momentum equation

ou du dp Jt
—_— — P ~2
pY R dy dx  dy (23)
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and an examination of Eq. (20) derivatives of the stream function, F, with
respect to the streamwise coordinate x arise both through the terms pudu/x,
which controls streamwise convection and pvdu/®x, which controls .ransverse
convection. When contributions of both these terms to &/ ¥ were neglected
in regions of reversed flow, the solution became unstable. However, when
only the contribution of pudu/d was neglected in the reversed flow region,
a stable solution was obtained. 1In this latter case the factor &F/& which
arises from the term pvdu/dy is treated as a nonlinear coefficient whose
value was approximated by extrapolation of the stream function from previous
stations. This method of approximating the convective terms in the momentum
and energy equations rendered the system marginally stable in the presence
of reversed flow. However, when calculating turbulent boundary layers with
large, high speed reversed flow regions instabilities occurred. Following
Reyhner and Flugge-Lotz (Ref. 41), rather than simply neglecting these con-
tributions to the convective terms in the momentum equations, the absolute
value of the appropriate coefficients were used to provide added stability.

Turbulence Model

In the early stages of the present work the turbulence model used was
identical to that used in the weak interaction solution (See Appendix C).
Since this turbulence model was developed for attached flows, the resulting
poor agreement for separating flows between calculations and data was not
unexpected. The weak interaction turbulence model was based upon a mixing
length model in which the mixing length was determined either by an equi-
librium turbulence assumption or by the solution of the integral turbulence
kirnetic energy equation. This turbulence model was well-known and when used
in the turbulence kinetic energy mode has been proven accurate for a broad
spectrum of attached boundary layer flows (Refs. 25, 33, 34 and 46), 1In
strong interaction separating flows, however, the basic model developed for
attached flow yielded poor agreement with data even when used in the
turbulence energy mode and, in fact, calculations made with the original model
in the turbulence energy mode showed little difference from calculations made
with the original equilibrium model. Thus, both models appeared inadequate
in separated flows.

Ina recent paper (Ref, L0) Owen showed that in the case of confined coaxial

jets with recirculation, the turbulence followed the dividing streamline and appeared
to diffuse from this streamline as the main flow progressed downstream. Little turbu-
lence was found in the veversed flow region. Based upon some computational turbulence
studies and the data of Owen, a modification of the basic turbulence model was postu=
lated for boundary layers containing recirculating flow. The details of the modi=-
fied turbulence model are presented in the Results section of this report along
with comparisons of computations using this modified model and test data.

13




Solution Of The Strong Interaction Boundary Layer Equations

The strong interaction boundary layer procedure was formed bv modifying
the existing weak interaction boundary layer code in the manner described
previously. However, the application of the forward marching strong inter-
action procedure to compression corner or incident shock problems requires
an iterative method of solution based upon the branching solutions obtained
when the interaction is treated as a forward marching problem. Therefore,
the present section discusses characteristics of the family of branching
solutions that can emerge in strong interaction computations. As will be
discussed in detail subsequently, the forward marching procedure can be
posed so that the problem contains a free parameter. Different choices of
the free parameter lead to different branching solutions and the iterative
solution consists of determining what value of the free parameter is
required to satisfy specified downstream boundary conditions. Since proper
choice of the free parameter produces the desired computational solution,
characteristics of the selection and iterative updating of the free parameter
also are discussed.

Characteristics of the Branches

The nature of the solution to the strong interaction boundary layer
equationshas been the subject of a series of investigations (Refs. 5, 19, 22,
24, 27 and 41). 1In brief these investigations have shown that the strong
interaction boundary layer equations can be satisfied by a family of solutions
(see Fig. 1) consisting of the classical weak interaction solution (termed
the fundamental solution) and in addition, a family of branching or departure
soluticns (termed free interaction solutions). From a numerical point of
view Tyson (Ref. 53) has shown that these branching solutions can emerge in
solving finite difference equations when the streamwise step size is chosen
to be less than a characteristic departure length; for large streamwise step
sizes only the fundamental weak interaction solution emerges. The validity
of these branches as eigensolutions of the laminar boundary layer equations
was demonstrated by Hankey, Dwoyer, and Werle (Ref. 20) and the role of the
initial conditions in determining which branch of the family of solutions
emerges was investigated by Werle, Dwoyer, and Hankey (Ref. S4). Both Refs.
20 and 54 demonstrate that a single free parameter exists in the initial
conditions to the solution of the laminar strong interaction boundary layer
equations that controls which of the many physically possible branching
solutions will emerge. By controlling the free parameter one can select the
branch to emerge from the solution., More recently Bertke, Werle, and Polak
(Ref. 5 ) have demonstrated that the strong interaction turbulent boundary
sayer equations contain branching characteristics analogous to the laminar
branches described above,

14
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Downstream Boundary Conditions

An obvious problem which arises when the interaction flow field is
solved via a forward marching procedure is the specification of the down-
stream boundary condition. At the upstream boundary of the calculation
region, the boundary layer velocity and density distributions are specified.
At the downstream station the correct boundary condition must be based upon
the pressure (or Mach number) being consistent with the incident shock
strength or compression corner angle. In the present effort the condition
chosen is that the axial pressure gradient be zero when the static pressure
is equal to the inviscid downstream value.

Since the strong interaction boundary layer equations are solved by a
forward marching technique, an iterative solution procedure is employed to
couple the downstream boundary conditions into the solution. First, values
of the boundary layer properties as well as the free parameter controlling
the branching are set at the upstream boundary of the flow field. The
boundary layer equations coupled to an outer flow law are then integrated
downstream by the implicit finite difference procedure outlined previously
and the pressure distribution generated by the solution is monitored. If
the axial pressure gradient is zero at the station where the static pressure
is that given by inviscid considerations downstream of the shock, then the
problem is solved; if not, the free parameter at the initial station is
changed and the boundary layer equations integrated again. The iteration on
the free parameter at the initial value plane is continued until the down-
stream boundary conditions are met to the desired tolerance. This procedure
is simply a varient of the well known shooting technique for two-point
boundary value problems.

Branch Control

The boundary layer calculations were started using the weak interaction
boundary layer procedure to predict the development of a boundary layer under
an imposed constant static pressure distribution. After marching several
steps to settle out the effect of intial conditions, the weak interaction
calculation was replaced by a strong interaction calculation. At the point
of switching to the strong interaction calculation the solution branch was
selected by imposing a pressure gradient at the last weak interaction station.
In general, the stronger the adverse pressure gradient imposed, the sooner
the compressive branch emerged. The more favorable the imposed gradient, the
later the compressive branch emerged. FEven more favorable imposed pressure
gradients produce expansive branches. Since the branching behavior is
determined by the details of the boundary layer profiles at the start of the
interaction (Ref. 5h), it was not possible to determine in advance the imposed
prescure gradient that would produce a given branch. In general, a series of
runs were made for each case to determine empirically the details of the
relation between the imposed pressure gradient and the emerging branch solution.




The free parameter that was used to impose the pressure gradient at
the start of the strong interaction was a perturbation in the edge velocity
termed a "kick". Obviously, the perturbation in edge velocity imposed a
specified pressure gradient upon the boundary layer at the last weak inter-
action station. Although an imposed pressure gradient was used as the "free
parameter” in the present study, this was only one of several possible 1
methods which could be used to generate the required series of branching
solutions. In the process of iterating on a solution, small changes in
the kick at the start of the interaction are required to produce changes
in the flow field at the downstream boundary. However, in the process of
integrating the strong interaction boundary layer equations downstream,
small changes in the initial flow field become smothered by truncation
error from the linearizations and from the classical problem of significant
figures. One solution to this problem has been to go to double precision
on the computer and thereby gain additional significant figures in the
calculation.

Another method for controlling the branches was found that obviated
the need for double precision. This method consists of dividing the
interaction procedure into two parts, each using a different but conceptually
equivalent free parameter. First the kick is used as the free parameter
that determines the location of the start of the free interaction relative
to the location of the incident shock or compression corner. The iteration
on the kick, described above, is used until the limit in significant figures
was approached. The kick is then frozen at the latest value. The second
part of the iteration uses the distance between the start of the free
interaction and the location of the incident shock or compression corner
as the free parameter. Leaving the upstream solution unchanged, the location
of the shock or corner is moved up or downstream until the downstream flow
field is compatible with the downstream boundary conditions. The change in
free parameter used to control the iteration has removed the need for double
precision in the cases that were investigated.

Results

The strong interaction boundary layer was computed by iteratively
selecting compressive branches of the boundary layer equations until compat-
ibility with the downstream boundary conditions was obtained. This section
presents the results of applying this strong interaction boundary layer
calculation procedure to a series of laminar and turbulent compression corner
flows. The laminar runs are presented to verify the procedure used since
the laminar calculations are not complicated by turbulence modeling. Both
the validity of the numerics and the control of the branching solutions are
presented. When turbulent strong interaction calculations were performed,
the qualitative behavior of the solutions was found to be the same as in the
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laminar case, however originally the quantitative agreement with experimental
data was found to be poor. The source of the problem in the case of turbulent
flows was found to be the turbulence model. Therefore, based upon some recent
experimental data of Owen (Ref. 40) a revised turbulence model was postulated.
Turbulent solutions with both the original and the revised model are presented
subsequently.

Laminar Flow

Other investigators have achieved apparently accurate predictions of
laminar interacting boundary layers using physical sssumptions similar to
those used in the present effort. These available solutions can be used to
confirm the correct operation of the UTRC Code. Furthermore, the laminar
case provides a direct confirmation of the numerics since it is not complicated
by the turbulence modeling required for turbulent boundary layer calculations.

In separating boundary layers, experimental data (Refs. 11, 13, 16 and 49)
indicates that when separation in supersonic flow results from an incident
shock or a compression corner, the shape of the initial pressure rise and
the associated changes in the boundary layer profile are independent of the
specific cause of the compression, a phenomenon termed free interaction.
Ixperimental data also shows that the distance between the start of the
pressure rise and the incident shock or compression corner increases as the
strength of the imposed compression increases. Thus for given conditions,
free interaction pressure distributions form a family of identical initial
pressure rise contours (Fig. 2) whose location relative to the location of
the incident shock or compression corner is determined by the strength of
the overall compression. Two free interaction pressure distributions are
parallel to each other only being separated by a constant displacement in
the streamwise direction. Tt should be noted that both laminar and turbulent
boundary layers have been found experimentally to exhibit this free inter-
action property. In the case of laminar flow the various pressure rise
curves reach a common plateau at a pressure level termed the "plateau pressure"
(see Fig. 2) which occurs at a streamwise location upstream of the incident
shock or compression corner.

In the present effort in which strong interacting boundary layers ere
computed by a forward marching procedure, departure solutions emerge and, as
described in the previous section, these computational branching solutions are
bona fide solutions of the boundary layer equations. The behavior of these
computational branching solutions was found to correspond in a qualitative
manner to the experimentally observed free interactions for both laminar and
turbulent separating boundary layers. For given flow properties different
departure solutions give pressure rises which initially are parallel and only
differ in the location of the pressure rise. The computed laminar branching
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solutions obtained in the present study were compared to the free
interacting plateau pressure correlation of Curle (Ref. 14)and the pressure
rise to separation correlation of Chapman, et al (Ref. 11l)in Fig. 3. The
comparisons of the calculations with the data correlations show the
predictions of the present procedure to be in good agreement wilLl. both the
separation pressure and the pleateau pressure correlations.

Two calculations corresponding to two different upctream conditions
are shown in Fig. 3. In both calculations the interacting solutions are
started by first marching the code for several streamwise stations under
a specified free-stream velocity distribution, i.e., an imposed pressure
distribution. A velocity perturbation, the "kick",is then added to the
imposed edge velocity to trigger the branching solutions. At stations down-
stream of the kick, the edge velocity is determined from the strong-
interaction calculation. Different kicks lead to different profiles at
the last station prior to the interaction and thus lead to different
solution branches. The desired branch can be selected by iteratively changing
the "kick". This control of the branches, along with the ability to calculate
reattachment was confirmed by running a series of sample calculations at

M = 4. The branch control obtained via an upstream kick is presented in
Fig. L.

When the conditions at the start of the interaction are varied in
an attempt to match downstream boundary conditions, small changes in the '
kick are required. Because of the tolerances used in the iteration and the
truncation inherent in the solution, the effect of small changes in the "kick",
smaller than the changes shown in Fig. 4, can become numerically insignificant
by the time the calculation marches past the corner. Tighter tolerances and
double precision could be used to alleviate this problem, however either of
these would have an associated increase in computer run times. Therefore, a
second method of branch control was investigated in order to control the
reattachment and downstream branching. The second method of control was
obtained by displacing the compression corner small distances up or down-
stream relative to the start of the interaction. Control of the reattachment
and downstream branching solutions was successfully obtained by this means as
shown in Fig. 5. In practice a combination of both methods of branch control
is employed. The "kick" in edge velocity at the start of the interaction is
used to control the branching until the downstream solution became insensi-
tive to small changes in the "kick". Final resolution of the downstream
boundary condition is accomplished by small displacements of the location of
the compression corner. Applying this two stage method of branch control,
a laminar strong interaction calculation was made to compare to the data of
Lewis, Kubota, and Lees (Fig. 6). After a suitable kick was imposed, various
branching solutions were obtained by corner displacement. As expected, two
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families of solutions emerged: one giving continually increasing pressure
and one giving a pressure maximum followed by a pressure decrease. Since
this study is primarily concerned with strong interacting turbulent boundary
layers, the pressure overshoot that occurs in laminar boundary layers after
reattachment (Ref. 28) is not addressed in this report. The corner location
was iterated upon to move the branching location between the two families
further and further downstream. The results of the calculation are presented
in Fig. 6 which shows good agreement with data over most of the interesting
range.

Turbulent Flow

After the procedure was confirmed through the laminar calculations
presented in Figs. 3-6 the procedure was applied to strong interacting
turbulent boundary layers. The results appeared to be qualitatively reasonable,
however, the free interaction pressure rise was more abrupt and led to
higher plateau pressure than was indicated by data as shown in Fig. 7.

Similar results were obtained by Bertke, Werle, and Polak (Ref.5 ) using

a different turbulence model. In the present code the computed turbulence
structure is based upon a mixing length model in which the mixing length

can be determined by either an equilibrium turbulence assumption (equilibrium
model) .of by the solution of the integral turbulence kinetic energy equation
(TKE model). Under either the equilibrium or TKE option, the turbulence
structure is based upon an assumed one-parameter mixing length profile which
varies with distance from the wall as a hyperbolic tangent function. In

the immediate vicinity of the wall the mixing length is damped by a prob- '
ability damping function. The free parameter in the profile is the "wake"
value of the mixing length; i.e., the value far removed from the wall. When
the equilibrium turbulence option is used, this wake value is a function of
the boundary layer thickness and the local momentum thickness Reynolds number.,
When the turbulence kinetic energy option is used, the "wake" value of the
mixing length emerges from the solution of the integral turbulence kinetic
energy equation.

A turbulent free interaction was computed first with the equilibrium

model and then with the TKE model. As shown in Fig. 8, the calculated wall |
pressure and skin friction distributions were found to be virtually identical
even though the wake mixing length distributions of the two methods differed 4

considerably (see Fig. 9). The low Reynolds number correction factor
(Appendix C) is used in both cases. In an attempt to gain some insight into
the sensitivity of the wall pressure distribution to the turbulence modeling
assumptions a series of frozen turbulence models were evaluated. First, the
eddy velocity was frozen at the value at the start of the interaction and
held constant along lines of constant distance from the wg}}_(y = const).
Second, the turbulence intensity (Reynolds shear stress -u'v') was frozen

at the start of the interaction and again held constant along y = const.
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Third, the eddy viscosity was frozen and held constant along streamlines,
and fourth, the turbulence intensity was frozen and held constant along |
streamlines, f

The results presented in Fig. 10 demonstrate that the wall pressure
distributions could be drastically altered by the turbulence modeling
assumptions,” However, as shown in Figs. 9 and 10 the wall pressure distri-
butions produced by the original TKE and equilibrium models were very similar
yet the wake mixing length distributions produced by these assumptions were
considerably different. To resolve this apparent contradiction an inves-
tigation was made into the details of the turbulence structure produced by
the TKE and equilibrium models. The mixing length distributions within the
boundary layer produced by the TKE and equilibrium models were compared as
shown in Fig. 11 at three streamwise locations. Although the TKE and
equilibrium models produce significantly different values of the wake mixing

length, Fig. 11 shows that the turbulence modeling near the wall remains
unaffected by the changes in the wake turbulence. Thus the problem with the

turbulence modeling may not be one of predicting the wake properties but may
be one of predicting the distribution of turbulence near the wall, especially
in the recirculating region.

In a recent paper (Ref. 40 ) Owen showed that in the case of confined
coaxial jets with recirculation, the turbulence followed the dividing stream-
line separating the recirculating flow from the outer flow (in a time averaged
sense) and appeared to diffuse from this streamline toward the wall as the
main flow progressed downstream. Little turbulence was found in the reversed
flow region. Based upon the results of the turbulence studies presented in
Figs. 9-11 and upon the data of Owen, a modification of the basic turbulence
model in the near wall region has been postulated for boundary layers containing
recirculating flow. This modification employs the observation that in attached
boundary layers the wall is a continuous streamline of the flow. TIn separated
boundary layers, the dividing streamline is the limiting streamline of the
main flow region, and the turbulence approaching the recirculation region is
convected around the bubble by the mean flow. Therefore, the damping of the
turbulence from the wall in the original turbulence model is replaced by
damping of the turbulence from the dividing streamline when a recirculation is
present. Since Owen's data implies a clight spreading of the turbulence into
the recirculating region, a diffusion of the turbulence from the dividing
streamline into the recirculating flow region is included in the modified
model. This diffusion is postulated to spread the turbulence at a 4° half angle
into the forward flow portion of the recirculating region. Damping by the wall
is expected to have a strong effect in the relatively low speed reversed flow,
and since Owen found little turbulence in this region the turbulence is assumed
to be completely damped in the reversed flow. In attached boundary layers, the
modified turbulence model collapses into the original model. Mikulla and
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Horstman (Ref. 36) have recently published data that includes turbulence
measurements for a shock wave-boundary layer interaction. Although the
measurements taken only roughly define the turbulence field, the data is
in qualitative agreement with the conclusion drawn from the data of Ref. LO.

The turbulent free interaction calculation of Fig. 7 was recalculated
using the modified turbulence model. A comparison of the wall pressure
distributions calculated using the original and the modified turbulence
model is presented in Fig. 12, where the wake mixing length has been set
in both cases by the Prandtl mixing length equilibrium turbulence model.

As shown in Fig. 12 the modified turbulence model corrects the overly abrupt
initial pressure rise and reduces the plateau pressure, and therefore, the
modified model leads to better agreement with experimental data. A comparison
of the turbulence distributions for the original and modified turbulence
models is presented in Figs. 13-16. Tt can be seen from Figs. 13-16 that

the modifications in the turbulence models affect the wall region and in

the case of the TKE model can also affect the wake region.

The calculations of the strong interaction boundary layer procedure
with the modified turbulence model are compared to the compression corner
data of Spaid and Frichett (Ref. 51) in Figs. 17-19. Three cases at an
upstream Mach number of 2,93 were investigated for ramp angles of 9.81°,
16.06° and 19.67°. The separation bubble length varies in these cases from
very small, less than a third of the upstream boundary layer thickness, to
very large, over 2 1/2 times the upstream boundary layer thickness. Figures
17-19 show in all three cases that the calculated overall pressure distribution
is in good agreement with the data.
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THE NAVIER-STOKES APPROACH

[he second phase of the present effort is a feasibility study in which
the Multi-dimensional Implicit Nonlinear Time-dependent (MINT) procedure of
Briley and McDonald (Ref. 9) is applied to the interaction flow field. Until
fairly recently it would have been impractical to consider a Navier-Stokes
solution to this problem, however, rapid advances both in numerical analysis
and computer technology now make the Navier-Stokes procedure a possible alter-
native to the extended boundary layer procedures for shock wave-boundary layer
interaction predictions. Solutions based upon a Navier-Stokes procedure have
several advantages over those based upon boundary layer analyses. First of
all, solutions based upon the Navier-Stokes equations need not make an arbi-
trary division between viscous and inviscid portions of the interaction flow
field. In addition, Navier-Stokes procedures solve a full transverse momentum
equation and need not make any approximation to the convection terms in sepa-
rated flow regions. These considerations indicate that even if a Navier-Stokes
interaction procedure would require more computer resources (storage and run
time) than a boundary layer interaction procedure, its potentially increased
accuracy may make it an attractive alternative.

In the past few years several investigators have applied Navier-Stokes
procedures to the interaction problem (e.g., Refs. 2, 29, 30, 47 and 48). With
the exception of MacCormack (Ref. 30), all those solutions have been based upon
explicit finite difference procedures. In Ref. 30, MacCormack used a hybrid
procedure in which convective terms were treated explicitly and viscous terms
treated implicitly. One major difficulty which seems to emerge in varying
degrees of severity in Navier-Stokes interaction solutions is the accurate
treatment of the shock wave. Over the past years a considerable effort has
been expended in developing explicit procedures which can solve the flow
equations in the presence of flow discontinuities (shocks). The explicit
finite difference interaction procedures mentioned above are based upon such
a procedure originally suggested by the weak solution concepts of Lax and
developed to a fine point by MacCormack; this procedure is described in detail
in Ref.?29. In a separate development Moretti (Ref. 37) treated shock waves as
spatial discontinuities with explicit recognition of their presence. However,
at the present time this technique cannot be used in viscous regions where the
shock can be physically diffracted by the shear layer. To date, no similar
large scale shock treatment effort has been undertaken using implicit methods.

Tn a study of invisecid transonic flow Murman and Cole (Ref. 38) solved the
transonic perturbation equations using an implicit line relaxation procedure.
Ihe Murman-Cole technique succeeded in capturing shocks in supercritical flow
as part of a continuous solution owing largely to the numerical viscosity
introduced by the difference scheme. 1In a later work Murman (Ref. 39) used a
special difference operator at the sonic line (the shock point operator) and
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again captured the shock as part of a continuous solution. The shock
representation in this latter work was considerably sharper than in the Murman
and Cole work. Both procedures are discussed in some detail by Hafez and

Cheng (Ref. 19). 1In addition, Beam and Warming (Ref. 4) have used the Briley-
McDonald numerical procedure to investigate the flow field about a shock in
which the flow passes from a supersonic to a subsonic state. Therefore,
although some effort has been expended upon shock representation within
implicit schemes, the effort has concentrated primarily upon (i) flows which
are inviscid and (ii) shocks through which the flow goes from a supersonic to

a subsonic state. Neither of the above requirements is satisfied in the shock
wave-boundary layer interaction problem where the flow is viscous and the shock
is usually not strong enough to cause subsonic flow on its downstream side. |
l'he Navier-Stokes portion of the present effort represents a simple feasibility |
study in which a fully implicit procedure is applied to the shock wave-boundary
layer interaction problem. The study assesses an application of the MINT code,
in its present form, to the interaction problem, gives an estimate of computer
run times and indicates areas in which further development work would be
required to obtain a reliable and accurate prediction procedure.

The Basic Analysis

The Governing Equations

The equations solved in the procedure represent conservation equations of
mass, momentum and energy (Ref. 6)., For simplicity the equations are expressed
in vector notation below and all quantities are nondimensional. Velocities are
normalized by Up, density by Pps enthalpy by hp, temperature by Tp, pressure by

Pp = pDR Tp where R, is the gas constant, dynamic viscosity by Uy and time by
(L/Up) where L is the reference length, body forces and bulk viscosity are all
assumed to be negligible. The resulting time-~averaged equations are given by

Continuity
) ap 2
Sl = N 24
31 V -(pT) (2k)
Conservation of Momentum
P 2 1 =y
220l -y (pu0) - -07 o+ 45V (2end) = 5 75 ¥ [Mer (V0] (9)
DD

Conservation of Energy

éé(ﬂ’t*_)hv (pUH)+ 2 92, | g (ron

i (- To) (D]




The mean flow rate of strain tensor in Eq. (25) is given by

é- é_ [(vu)+(vaf] (27)

The necessary thermodynamic relationships are

p=pT (28)
H=h+ L .U_Dz_ (TU) (29)
2 hp

and for constant specific heat the enthalpy is

h =cCpT (30)

In order to solve the above system of equations it is necessary to specify
the turbulent exchange coefficients Hepp and rh' In the present analysis since
the effective Prandtl number is defined from knowledge of turbulent flows of
gases, only the turbulent momentum exchange coefficient, Bofes must be speci-
fied. The energy exchange coefficient is obtained from the relation

Ty = Heft (31)
P
Te ff

and the effective viscosity is obtained from a turbulence model.

The Turbulence Model

In the case of laminar flow the governing equations, Egs. (24) - (26),
along with the relations expressed by Egqs. (27) - (31) are sufficient to deter-
mine a solution when proper boundary conditions are applied. However, in tur-
bulent flow it is necessary to hypothesize a turbulence model relating the
turbulent viscosity to the other problem variables. Over the past years many
such models have been hypothesized. These include equilibrium models relating
a mixing length or eddy viscosity to local variables, and historical models in
which the local turbulent stress is determined through an additional equation
(or equations) relating the stress to the upstream history of the flow. A
model of the latter type in which a mixing length is hypothesized but in which
the magnitude of the mixing length is determined by the turbulence kinetic
energy equation is discussed in the boundary layer section of this report.
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Since the present Navier-Stokes effort represents an initial feasibility
study, a relatively simple turbulence model based upon a mixing length was
used. This model is similar to the two-region eddy-viscosity model utilized
by Shang and Hankey (Ref. 48), in which the mixing length in the inner region
is given by the equilibrium model discussed in Section II, i.e., the turbulent
viscosity is

*Hi=PLZV2£:$

(32)

with the mixing length, ¢, given by

4';.:‘9“_@ tonh/ﬂ) Ds
Sp 8y Lo

where 8. is the local boundary layer thickness, K is the von Karman constant,
y is the distance from the wall, and :bs is a sublayer damping factor defined
by

2,-[p (LX) ()

o

where P is the normal probability function, and

y'=y (%)"2 Fe (34)

Here 1 is the local shear stress, y+ = 23 and ot = 8.

For two-dimensional equilibrium turbulent boundary layers (zm/sb) has a
value of approximately 0.1, which was employed in the calculations reported
herein. 1In addition, because of the difficulty of defining the boundary layer
edge in an interacting flow field, 6, was taken as the boundary layer thickness

upstream of the interaction region.

The outer region eddy viscosity is given by the Clauser defect law, i.e.,

Ky, = 00168 pumay Bine Vi (35)
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x,
where § in

¢ is the kinematic displacement thickness

Binc= [ (1= 5) o (36)

Umax

and v, is the Klebanoff intermittency which may be approximated b
x oy

A [ +5.5(8lb)6|" (37)

In Egs. (35) - (36), wy,  has been employed instead of the edge velocity to
avoid possible anomalous behavior of the transient solution (Ref. L48).

Artificial Damping

The treatment of shock waves in a Navier-Stokes calculation procedure
with finite differences requires the use of artificial diffusion in order to
prevent numerical oscillation which may cause solution divergence. In the
present implicit procedure a modified form of the fourth-order pressure damp-
ing term suggested by MacCormack and Baldwin (Ref. 29) has been employed,
viz., a term of the form,

_n 9%
Opy = ™ ax, 2 (38)

has been added to each of the governing equations being solved for each
coordinate direction x, . The diffusion coefficient Ty in Eq. (38) was taken
as

4 ax,2 g
P k

where O < B < }, ¢ is the local sound speed, and the average pressure p
given by

is=74L (pi-u + zpi*pi.u)

(40)

where i is the grid point index in the xk-dirvction. In the damping term the
factor ¥ is set to 1.6 for the continuity equation and to p for all other
conservation equations.




Boundary Conditions

In the present Navier-Stokes calculations boundary conditions were
specified along all boundaries of the computational regime. At the wall the
normal and tangential velocities were set to zero and a three point one-sided
difference form of the continuity equation was applied. At the upstream edge
of the calculation region both velocity components as well as the density were
specified. These values were determined by performing a calculation over a
region extending from a station slightly downstream of the plate leading edge
to a station slightly upstream of the location at which the interaction calcula-
tion was to be initiated. This calculation yielded a flat plate boundary layer
solution that was consistent with the finite difference representation, turbu-
lence model and grid spacing used for the interaction problem. The profiles
calculated at the station having the desired boundary layer thickness then were
used as upstream boundary conditions for the interaction calculation. At the
downstream boundary first derivatives of all dependent variables were set to
zero. Finally, both velocity componentsand the density were set at the outer
edge boundary. This boundary was taken at a distance of approximately five
boundary layer thicknesses from the wall. An oblique shock was assumed to
penetrate the boundary between the third and fourth grid points from the
upstream station. The values downstream of the shock were obtained from the
oblique shock relations.

The Nonuniform Grid

The accuracy of solutions computed with a given number of grid points
often can be improved by using a nonuniform grid spacing to ensure that grid
points are closely spaced in regions where the solution varies rapidly. In the
interaction flow field large gradients are present near the wall and conse-
quently fine grid resolution is desired in this region. This grid resolution
was obtained using an analytic coordinate transformation devised by Roberts
(Ref. L42) which is a very effective means of introducing a nonwiform grid when
the steep gradients occur near the computational boundaries. Suppose that N
grid points are to be used in the range Xl < X £ X5, and that steep graidents
are anticipated in a region of thickness, B8 (XQ-Xl) near Xl. Then Roberts'
transformation XT(X) is given by

X1 (X) = N+(N-1) m(’)‘(:g:z)/m(%t%) (b1)
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where a = X l’ b2 2/(1 8), and ¢ = X The use of equally-spaced points ;
in the transformed coordinate, Xp, ensures an adequate resolution of both the

overall region X; € X £ X, and the subregion X; X < B(Xp -X;). Derivatives

with respect to the physical coordinate, X, are obtained from the following

formulas:
_d__ dXy 0 ~
dX dx 9X 5]
2 2
_i.z_:(d_t) ac L d% B (43)
ax? dx | 0x;2 dx2  OXy

The use of three-point difference operators for X, derivatives in Egs. (33) and
(34) produces similar operators for X derivatives. These X-derivative operators
can be computed at the start of a calculation and stored, along with the X
locations of grid points.

In the present effort rather than use the Roberts transformation over the
entire flow regime, the transformation was used only in the vicinity of the
wall. In regions away from the wall an equally spaced grid was used. The two
regions were matched by requiring that at the join point the physical step size
in the transformed regime be the same as the step size in the equally spaced
regime. Thus continuity of the spacing was preserved. It should be noted that
although the mesh was continuous, its derivative was not and an improved mesh
would join the Roberts region to the equally spaced region via a transition
region. However, the mesh did not seem to be the cause of any numerical prob-
lems and, therefore, the two region mesh was deemed adequate for the present
investigation.

Method of Solution

EFxact analytical solutions of the Navier-Stokes equations are rare due to
their high order and coupled nonlinearity. As a result numerical methods must
generally be employed for the solution of these equations In addition, one of
the major obstacles to the solution of the thrcv-::me.h'\nal compressible
Navier-Stokes equations is the large amount of computer time regquired, and con-
sequently efficient computational methods are highly desirable. Most numerical
procedures used to solve the Navier-Stokes equations have been based on explicit
difference schemes for the unsteady form of the governing equations, and are
subject to one or more stability restrictions on the size of the time step
relative to the spatial mesh size (e.g., Refs. 1, 29 and 43). These stability
limits usually correspond o the well-known Courant-iriedrichs-Lewy (CFL) con-
dition and in some methods to an additional viscous stability condition. A




key disadvantage of such conditionally stable methods is that the maximum time
step is fixed by the spatial mesh size rather than the physical time dependence.
If a steady solution is being computed as the asymptotic limit of the unsteady
solution, then using a small time step requires a large number of steps to reach
the steady solution.

In contrast to most explicit methods, many implicit methods tend to be
stable for large time steps, and hence, offer the prospect of substantial
increases in computational efficiency, provided of course that the computa-
tional effort per time step is competitive with that of the conditionally
stable methods. An accurate and efficient implicit method termed the MINT pro-
cedure has been developed at JIRC by Briley and McDonald (Ref. 9) for solution
of the three-dimensional, compressible Navier-Stokes equations. This procedure
since has been used for further studies of rectangular duct flow by Briley,
McDonald and Gibeling (Ref. 10) and for three-dimensional combustor flow cal-
culations by Gibeling, McDonald and Briley (Ref. 18). The Navier-Stokes por-
tion of the present study is based upon a two-dimensional version of the MINT
code. In brief, this procedure first linearizes the equations by expanding the
solution at a known time level, n, to represent the solution at time level n+1.
'he resulting linear equations are solved using an alternating direction
implicit (ADI) method. A description of this numerical procedure is presented
in Appendix D. More detailed descriptions are presented in Refs. 9, 10 and 18.

Results of Navier-Stokes Computations

Several sample cases were considered in assessing the ability of the MINT
code to make predictions of the shock wave-boundary layer interaction flow
field. The shock impingement problem was considered herein since some
experimental data are avail.ble (Law, Ref. 26), and this problem has been
considered previously by other investigators (e.g., Refs. 29 and 48). The flow
conditions upstream of the incident shock wave were chosen to correspond as
closely as possible to Law's experiment (Ref. 26). Incident shock waves of
strength py/p; =2 (case 1, 8 = 27.4°) and py/p; = 3 (case 2, g, = 33.8°)
were considered, where Py is the static pressure upstream of the shock, Po is
the static pressure downstream of the shock, and 8 3 is the shock angle. The
former case corresponds approximately to the shock generator angle of 9.87°
examined by Refs. 26 and 48.
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The flow field in the present analysis is divided into two overlapping
computational domains following the procedure used in Ref. 48. 1In the first
domain the turbulent boundary layer development over a flat plate was calcu-
lated. A 36x40 computational grid covering a physical domain of approximately
58x605 was employed in the boundary layer calculation. The interaction region
is contained in the second computational domain. For case 1 a 36x61 computa-
tional grid was employed for a domain of about 5&x206, and for case 2 a
36x56 grid was employed for a domain of about 5§x17¢. A Roberts grid trans-
formation was used in the normal coordinate direction with 23 points in the
inner region (AYmin = 0.0063 mm), and 13 points in the constant mesh-spacing
outer region (Ay = 1.09 mm). The streamwise grid spacing in the boundary &
layer calculation (first computational domain) was Ax = 5.6 mm, while in the 2
interaction domain the spacing was Ax = 1.22 mm for case 1 and Ax = 1.14 mm
for case 2.
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In this feasibility study, computation times on a CDC 6600 were approxi-
mately one hour per case to reach convergence. However, the cases were run
with a generalized code capable of performing calculations both in three
dimensions and with orthogonal curvilinear coordinates and no serious effort
was made to optimize either the code or the time step for this particular
problem. If the code were rewritten to apply specifically to a Cartesian
system, it is estimated that the run times would be reduced by approximately
a factor of two. In regard to optimization of the time step, in the limited
amount of time and effort available a detailed study concentrating on time
step optimization for this type of probiem was not possible and a rather
conservative time step selected which doubtless did not take full advantage
of the large time step capabilities inherent in the present implicit
procedure. Finally, solution oscillations related both to the shock
representation and the turbulence model (which are discussed subsequently)
may also have increased the case running time. Based upon these initial runs,
it is estimated that a streamlined Cartesian deck with an optimum time step
could perform an interaction calenlation in 15 to 25 minutes of CDC 6600 run
time with about 2200 mesh points. Finally, it should be noted that the present
calculations were run with a grid definition in the near wall region much
better than that usually used in stability restricted explicit calculations.
For example, the grid spacing in the immediate vicinity of the wall used in
the present effort was approximately one-fifth of that used by Shang, Hankey,
and Law (Ref. 48). This improvement in grid definition obtained in the
present effort without an accompanying penalty in computer run time was made
possible by the favorable stability properties of implicit methods. In the
upstream boundary layer, the grid employed in the present effort contained
two points in the region y*< 7. Based upon our experience with classical
boundary layer solutions, one point is required inthe region y' < 7 to obtain
skin friction predictions which are accurate to within 10 percent.
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The sample cases pointed out several deficiencies in the 'shock capturing"
treatment of shock waves. As noted by Shang, Hankey, and Law (Ref. 44) there
is significant smearing of the incident shock wave in the relatively coarse
mesh which must be employed in a Navier-Stokes calculation. This shock
resolution problem appears to be more pronounced in the current implicit
procedure than it was in explicit procedures based upon MacCormack's method.
However, this is not surprising since MacCormack's method was developed for
shock calculations over a period of many years, whereas the present work is
the first application of the MINT procedure to flow fields containing shock
waves. The present results should not be construed as indicating an inherent
limitation of implicit schemes to resolve shock waves, they imply that at
this stage of development they do not capture shocks quite as well as some
of the explicit schemes. Obviously, much further work aimed at applying
implicit techniques to shock wave problems needs to be done.

Plots of skin friction coefficient and surface pressure are shown in
Figs. 20a and 20b for case 1 (92/pl = 2) and in Figs. 2la and 21b for case 2
(po/pP1 = 3). Although both experimental data as well as the explicit calcu-
lations of Shang, Hankey, and Law (Ref. 48) indicate separation under these
conditions, the present calculations do not. There are several possible
reasons for this discrepancy. First, as previously stated, the shock smearing
problem in the present implicit calculation appears to be more severe than in
explicit calculations performed to date. Secondly, a more sophisticated
turbulence model than that which was used may be required. Finally, in
comparison with the calculations of Ref. L8, the present procedure had a much
better definition of the flow in the wall region. It is not clear what the
effect of improving the grid definition in the explicit method would have upon
the explicit calculation results and, therefore, a direct comparison between
the present implicit calculation and the explicit calculation of Ref. L8 is
somewhat difficult. The experimental surface pressure distribution for case 1
is also shown in Fig. 20b, from which it is apparent that the initial rapid
rise of surface pressure which accompanies separation is not predicted very
well by the present calculations. This seems to be directly related to the
smearing of the incident shock wave and is believed to be closely connected
with the lack of separation in this case.

Since the pressure ratio p2/pl = 2 case did not separate, a stronger
shock calculation having a pressure ratio of 3 was considered. As shown in
Fig. 21b, the shape of the predicted pressure rise showed the rapid initial
increase expected in interaction flow fields. Furthermore, the level of the
downstream wall pressure was essentially the inviscid value. The predicted
length of the separated region was shorter than expected, a result
consistent with the lack of separation observed in the pressure ratio po/p1 2




N R

calculation. Finally, the skin friction distribution in the separated case
(Fig. 2la, pp/py = 3) is also qualitatively reasonable, although the increas
in skin friction downstream of the incident shock was unexpected. This may be
due to the turbulence model incorporated in the present procedure.

Several problems have been encountered in the present study which require
further investigation. First of all, shock resolution in the implicit frame-
work must be improved, since the resolution obtained with the present formula-

tion is apparently not as good as that obtained using MacCormack's alternating-

direction-explicit method (e.g., Refs. 29 and 48). Also, some oscillation of
the solution about the steady-state has been observed, especially in the sub-
layer. This problem may be partially related to both the turbulence model and
the choice of time step. Further investigation into the optimal choice of
the time step for this implicit procedure should be carried out, since it is
believed that a significant improvement in the :zonvergence rate can be
realized. Finally, the present calculations were obtained using primitive
variables (0, u, v, h) rather than conserved variables (p, pu, ov, p(e + 3q°))
which may have resulted in additional smearing of the incident shock wave.
Hence, in future studies consideration should be given to using conserved
variables.
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SECTION III
CONCLUSIONS

BOUNDARY LAYER ANALYSIS

The strong interaction boundary layer approach has been applied to the
shock wave turbulent boundary layer interaction problem. A well proven
weak interaction boundary layer procedure was modified to allow for strong
interaction solutions. The modifications included the incorporation of an
outer flow analysis and the revision of the governing equations to allow for
flow in separated regions. When the turbulence model originally developed
for weak interaction flows was used, poor agreement was found between the
calculations and data. This is consistent with the results reported by Shang
and Hankey (Ref. 47). Based upon computational turbulence studies and recent
experimental data, a modification to the basic turbulence model was developed
for boundary layers containing recirculating flow. Using this modified tur-
bulence model, good agreement was found between the calculations and test
data.

NAVIER-STOKES ANALYSIS

An implicit finite-difference Navier-Stokes analysis has been applied to
the shock wave-boundary layer interaction problem. Despite the fact that the
code was written in general curvilinear ccordinates and was not streamlined
for the interaction problem, solutions were obtained in reasonable run times.
Indications are that streamlining the code and optimizing the time step could
decrease the run time by a factor or four. Although solutions for strong
incident shocks showed a qualitatively correct behavior (i.e., skin friction
and wall pressure distributions were in qualitative agreement with data), the
procedure severely smoothed the incident shock wave thus suppressing
separation for moderate shocks and underpredicting the extent of separation
for strong snocks. Therefore, calculation of shock waves in an implicit
method requires further investigation.In addition, further work in regard to
turbulence modeling and optimum time step specification is warranted.
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APPENDIX A
WEAK INTERACTION CALCULATION PROCEDURE

The procedure used to solve the momentum and energy equations is a
Hartree-Womersley calculation procedure similar to that described by Smith
and Clutter (Ref. 50). 1In the calculation procedure the differential equa-
tions are transformed to a form more convenient for computer solution by
introducing new variables

m:y/8 (A-1)
e pu

=l - A-2

Pale (a-2)
TeO-TO

G'= A-
Te® - Trer 4-3)
B = Rl P (a-4)

where the primes indicate differentiation with respect to T, T is the
stagnation temperature, TREF is a specified constant reference temperature,

and 8* is a length scale usually taken to be the displacement thickness. In
certain flows, such as the boundary layer developing on the cold wall nozzle,
the displacement thickness may become small or even negative and in these cases
8* is taken to be a linear combination of the displacement thickness and a
constant reference length such that 6% remains positive.

The momentum equation, Eq. (9), and the energy equation, Eq. (10), are
solved by first eliminating v through the continuity equation, Eq. (3),
and replacing the variables T°, p, and u by G , F, and 8. The streamwise
derivatives are then replaced by finite differences leading to equations of
the form

Ay F"+ Ap F''+ A F'4 agF:A, (A=5)
B5G"+8B,6" +B,6'=Bg (A=6)
where A, and By are functions of I, g and their derivatives. The equations

are linearized by assuming values for F, G' and their derivatives based upon
the solution at the previous streamwise stations and the resulting linear dif-

ferential equations are solved by Gaussian elimination using the boundary
conditions
u .
FO):=1- Pwlw (A=T)
Pe Ye
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F'(8)= 0 (A-8)

(o}

' 3 TC -Tw - " -
G'(0) = L OR" G"(0):=0 (A-9)
6 ~ 'REF
G'(8yy) = O (A-10)

where §py is the thickness of the thermal boundary layer. In the calculations
presented in the present report, uy was always taken as zero. Having obtained
the solution of the linearized equations, the distributions of F and G' are com-
pared to the distributions used to evaluate the nonlinear coefficients, A, and
B, If the old and new distributions agree to within a specified tolerance,

the procedure moves to the next streamwise station. If the two do not agree,

the procedure is repeated. In the case of turbulent flow, the coefficients

A, and B, also depend on the turbulent kinematic viscosity, vp, and a turbu-
elnce kinetic energy equation is included in the iteration loop.
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APPENDIX B

BCUNDARY LAYER MODIFICATIONS FOR 6% SPECIFIED

To specify the displacement thickness, ¢*, and evaluate the static
pressure from the momentum equation, a relation containing §* was derived to
replace the pressure gradient terms in the momentum equation. A parameter,
Q, was introduced to represent the naturally occurring term:

* a *
o=%§x—(f>,",5) (B-1)

Q was then treated as one of the dependent variables and terms containing
products of Q and other dependent variables were linearized in the usual
manner.

From isentropic relations it can be shown that

o SR . Ne W
Pe O (y—i)CpTy Ox (B-2)
Expanding the definition of Q yields
8" .2 T
Q=u 8" — + 8" (u-——e——)-ie (B-3)
ox (y =D CpTe/ x
du
Solving for ..;Q
ou a8* g
o fomue ) [#2 (- ) o)
X (y=1) CpTé
which is of the linear form:
ou
-l;;(!:T|C)+T2 (B-5)
When specifying the displacement thickness, §*%, Tl and To in Eq. (B-5) are

evaluated and the linear relation in Q is used to replace aue/ax in the pres-
sure gradient terms of the momentum equation.
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The momentum equation is solved for the 5% specified cace by linearizing
the partial differential equations and replacing derivatives by differences
at each grid point. The resulting set of algebraic equations is then solved
for the value of the stream function, F, at each grid point and for the
parameter Q. The solution is obtained by a modified Gaussian elimination
which solves a quin-diagonal matrix with an additional column.
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APPENDIX C

ORIGINAL TURRULENCE MODEL USING THE TURBULENCE KINETIC ENERGY EQUATION 4

As shown in Ref. 46, the boundary layer approximation to the turbulence

kinetic energy equation is given by
) -n o2 B T seimpen B0
a0 A B T e T
advection production
9 O | S
= W (Pv + k-2 (pV) q ) pe€ (C-—l)
diffusion dissipation
S s ed gy 8 L
p (V] v o‘ + o!‘

normal stress production pressure-dilitation
A1l calculations reported in the investigation were made with the usual
assumption of zero pressure-dilitation contribution to the energy balance
(Ref. 8) unless otherwise stated. The turbulence model is developed by
integrating Eq. (C-1) with respect to y between the limits y = O and y = &
which leads to :

o 8. _ "3 8 - —— i 8
%;;fopuqz dy'fo-puv Ty & p €dy
LWt gravs [ P "“l gy +E .
where
L "% e O awe ey L s B
. E=[3‘Q (pu—ae- pvl)- Py 5 (pVv) QZJ {3
Following Townsend (Ref. U48) and Bradshaw and Ferris (Ref. 8) structural
coefficients a, and L are introduced, together with a mixing length £;
these scales are defined as —
e i ARG T
“u'viza g8, w097, v©ia4q
w's (1= oz—cs)qz
; (c-)
— 3/2 ———2 au
€= (-uv) /L , tuv) = U 2y

For fully-developed turbulence the structural coefficients a;, a,, and a
are assumed constant having values 0.15, 0,50, and 0.20, respectively (Refs.
7 and 31). Using Eq. (C-U4), Eq. (c-3) is put in the form

8 ' OU‘i
)+/o gl el (c-5)
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where

8/8* .. =
¢.=./; p;&u}' ('aé' otla/:')zd’? (c-6)
8/8° 3
b RN e o
L el e s o

where 1 is a nondimensional transverse distance y/8%, 8% is an arbitrary
reference length, and 8 the boundary layer thickness.

The left-hand side of Eq. (C-5) represents the streamwise rate of change
of turbulence kinetic energy and is derived directly from the turbulence
kinetic energy advection term. The term peu2¢2 represents the integral of
turbulence production minus dissipation and Peu3¢ is the normal stress pro-
duction. The terms designated by E are turbulent source terms resulting from
disturbances imposed upon the boundary layer by the free stream. As shown in
Eq. (C-3),E is the sum of two major contributions, the first (q%/2)(Puds/dx-pv)
representing the free-stream velocity disturbance (i.e., free-stream turbulence

entrained by the boundary layer) and the second, P v' + (pv)'q?/2, representing
the direct absorption of acoustic energy.

For fully-developed turbulent flow, as in Ref. 31, L and ¢ are given

by
% = 0.l tanh [xy/(o.l 8)] (c-9)
-‘;— = —éi’-" tonh [xy/.tw] (c-10)

where %o is the "wake" value of the mixing length at any particular streamwise
station. Although Egqs. (C-9)and (C-10) give accurate representations of £ and

L through most of the turbulent boundary layer, it is well-known that they
overestimate the length scales within the viscous sublayer and are somewhat
inaccurate at low Reynolds numbers. Following McDonald and Fish (Ref. 33)

the experimentally observed damping effect in the viscous sublayer is modeled
by assuming intermittent turbulence within the sublayer leading to the relation

2

ST 2 au
-uv' = Fuv), =T (Lau/gy), (:b 3 W) (C-11)




L omee e .

In. Eq. (C-6)r is the intermittency factor, D the damping factor, and the
subscript T indicates the value with turbulent flow. Obviously, D is
equal to the square root of . As in Ref. 33, the present investigation
assumes that the damping distributes normally about a mean height y+(y+=
yg&737v) with a standard deviation 0 leading to the equation

Dy -v* 1o} (c-12)

where P is the normal probability function; ;? is taken as 23, and O as 8.
A detailed discussion of the sublayer damping treatment is presented in Ref.
33. In the present calculations the von Karman constant x was taken to be
0.43.

In regard to the low Reynolds number effects, Coles (Ref. 12)has observed
and correlated the departure of the mean velocity profile of a flat plate
turbulent boundary layer from the usual similarity laws known to hold at
higher Reynolds numbers. Using Coles' correlation of the mean velocity pro-
file in the low Reynolds number regime, McDonald (Ref. 31) integrated the
boundary layer equations of mean motion to obtain local distributions of
turbulent shear stress and evaluated the local mixing length distributions
from the assumed mean velocity distribution and the computed shear stress
distributions. Based upon these calculations, a low Reynolds number correc-
tion for the dissipation length of the form

L=Lw[|+exp(-163 In Re+ 97)] (c-13)

was derived where Iw/6 is given by Eq. (C-9). In the calculations presented
in the present report the dissipation length used was obtained by multiplying
£q. (C-13) by the sublayer damping factor, .

When numerical values of the structural coefficients a, are specified,
Egs, (C-10). (c-12), and (C-13) are used to represent L and 4, and the pressure
dilitation is either neglected or modeled, the turbulence kinetic energy
equation, £q. (C-2), becomes an ordinary differential equation with the depen-
dent parameter &o(x) which is solved in conjunction with the boundary layer
momentum and energy equations to predict the development of both the mean flow
field and the turbulent shear stress.

n addition to including the turbulence kinetic energy equation in the

set of equations governing the boundary layer development it is necessary

to specify a model for turbulent heat flux contribution, ECPVTTT. As pre-

viously stated, in the present procedure, V'I' is specified by assuming a

tur%1den£_l:undti nunber, ?rT’ which rslgﬁes the velocity-temperature corre-

lation, v'T', to the Reynolds stress, u'v', through Eq. (8). The turbulent
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Prandtl number distribution used in the present procedure varies with distance .
from the wall in the manner suggested by Meier and Rotta (Ref. 35). As this b
Jjuncture it should be pointed out that an alternative procedure can be used
to determine VTTT, based upon an easily derived conservation equation for
either the quantity-ETz_or the correlation, VTTT, which is similar in form

to the turbulence kinetic energy equation, Eq. (23). However, to solve

this new conservation equation it is necessary to assume a universal struc-
ture relating quantities analogous to dissipation, production, etec. While
sufficient experimental data exists to allow valid modeling of the required
terms for the turbulence kinetic energy equation, the existing data does not
indicate how proper modeling could be carried out for the v'T' conservation
equation. Thus, at least for the present, the approach based upon a turbu-
lent Prandtl number appears preferable to an approach based upon the VT con-
servation equation.




APPENDIX D
THE MINT CAICULATION PROCEDURE

The MINT calculation procedure represents an efficient solution to the
multi-dimensional, time-dependent Navier-Stokes equations. The procedure is
presented in detail in Refs. 9, 10 and 18; for convenience it is presented in
condensed form in this appendix. As a prelude to this discussion it is con-
venient to define a difference notation. For the present it is assumed that
the flow region is three-dimensional and is discretized by grid points having
equal spacings A x;, A Xp and A X3 in the X1, Xp and X3 directions respectively;
in addition the time step is At. Reduction to two dimensions will be obvious
as the discussion proceeds and provisions for nonuniform grids will be intro-
duced at the end of this appendix.

The subscripts i, j, k and superscript n are grid point indices associated
with x,, Xp, and x3, and t, respectively. Thus é . i denotes ¢ (X155 X234,
X3, t") where @ can represent any of the dependent“Yariables, The subscripts
are frequently omitted if clarity is preserved, so that 61 is equivalent to
qg 3yke For convenience, the following shorthand difference-operator notation
is used for derivative difference formulas:

n n n
s n:'¢LJJk +4ﬁﬂ4¢ : a¢ 2
P -——_Eif;} e .k+ O(Axd (D-1)
L,
n n n n
8|2 ¢n & ¢j—i'|‘k _Zi'—‘-!'k # ¢'—th!’h = _@245 + O(Axl)z (D-2)
(A‘Jz ox 2 1,k

with analogous definitions for 6o, 6%, 63 and 6?. It is assumed that the

solution is known at the n level, t, and is desired at the (n+l) level,

tn+l.




LINEARIZATION

The large time-step capabilities of implicit methods can place great
demands on the linearization technique employed. Indeed, the favorable
stability properties of implicit methods can be severly compromised by an
inadequate linearization. The technique used in the MINT code permits the
implicit solution of coupled nonlinear equations in one space dimension by
a one-step noniterative procedure. This feature i1s retained for multidimen-
sional problems by using ADI techniques. The linearization is accurate when
variables change by relatively small amounts during a time step, and conse-
quently, the accuracy of the linearization can be controlled by varying the
time step. The linearization technique is also convenient for the implicit
treatment of coupled nonlinear boundary conditions, and this latter feature
has been found to have a highly favorable effect on the stability of the over-
all method (Ref. 9).

For demonstration purposes the technique now will be described for the
following first order equation in one spatial variable, ¢ (x,t)

0 ) Y
T (D-3)

The procedure is based on an expansion of nonlinear implicit terms about
the known time level, t%, and leads to a one-step, two-level ccheme which,
being linear in unknown (implicit)quantities, canbe solved efficiently without
iteration. The technique is easily extended to treat coupled systems of
equations and second-order spatial derivatives. The difference approximation
is derived from the following backward time-difference replacement of Eq.
(D-3)

ne|

=[r(¢) aix G(¢)] + 0 (at) (D-4)

"t~ $N
At

where the spatial differencing of the bracketed term is as yet unspecified.
Making use of chain-rule differentiation, the bracketed term in Eq. (D-4) is
expanded about tn; the result is then differenced using forward time differ-
ences and centered spatial differences to obtain the following implicit differ-
ence scheme:




QP SR L B S i s

ng}il ) F(¢in) 8y G(¢in) + F(¢in) 8y [(gi ):‘ (¢inz;¢in )]

aF\" [#"'- ¢! n
*(Wl( m*‘) B S{#)

(D-5)

On examination, it can be seen that Eq. (D-5) is linear in Jﬁa'and that
all other quantities are either known or evaluated at the n level. Because
of the spatial difference operator, 8., E4. (D-5) contains difi, ¢'§+l, and

:%; consequently, the system of linear equations generated by writing Eq.
(D-5) at each of the grid points, x,, must be solved simultaneously as an
implicit system. The implicit system of equations can be written in
tridiagonal matrix form, and can therefore can be solved easily and efficiently
by standard techniques for tridiagonal systems (see, e.g., Ref. 23). The
tridiagonal matrix structure emerges from writing Eq. (D-5) in the following
form:

Nel n
g =G, (D-6)

o/ ¢|T|l +b ¢

! n
+-Ci ¢

where the coefficients contain only n~level quantities, When applied at

success%ve grid points, Eq. (D-6) generates a tridiagonal system of equations
for ¢P+ %

APPLICATION OF THE METHOD

The extension of the numerical method to more than one spatial dimension
is based upon an alternating direction implicit (ADI) technique. The technique
is an application of the general procedure developed by Douglas and Gunn
(Ref. 15) in which the linearization technique described previously is applied
to the coupled system of governing equations, Eqs. (2Lk) - (26).

These equations are written in backward time difference form, and non-
linear implicit terms are linearized by expansion about t"o. The viscous
force terms in Eq. (25) which contain mixed derivatives (i.e., ”Z/Nx- Axy for
i f j) are most easily treat explicitly by evaluation at time level é.




Although mixed derivatives can be differenced implicitly within the Douglas-Gunn
framework, this would increase the number of intermediate steps and thereby
complicate the solution procedure. Previous experience with the method in

Refs. 9, 10 and 18 indicates that the explicit treatment of these viscous

terms had no observable effect on stability.

The difference equations obtained by the procedure outlined above repre-
sent a linearized backward difference scheme., The equations can be arranged
according to time and space derivatives, and written in the following matrix
operator form (Ref. 9):

o

E”(Jé::&;f::): 5;‘& n.l+

=N+l =N et o -
= ;¢ n 0;4, + &N (D-7)

=n
Here A is a (mxm) matrix containing the time derivative coefficients, where

m is the number gf eguations=geing solved; a is the column vector of the depen-
dent variables; Dy, ﬁg, and D3y are (mxm) matrices containing three-point dif-
ference operators egsociated with the coordinate directions x,, X5 and x4
respectively; and S 1is a column vector containing only n-level terms. Since
the multidimensional implicit system with coefficients generated by Eq. (D-7)
is difficult to solve, the Douglas-Gunn (Ref. 15) technique is applied to

Eq. (D-7) to generate an ADI scheme. With the observation that the Douglas-
Gunn procedure is being applied to a coupled system of equations, the follow-
ing three-step scheme is obtained. (For two spatial dimensions the technique
collapses into a two-step scheme.)




o = o .‘-ﬂ y - acan

i e S

-k - —-KNN
where ¢, ¢ , and ¢ are the intermediate solutions. Note that at each

step of the scheme, one more coordinatg direction is treated implicitly, and
that the most recent approximation to ¢ is not always used, as this would
adversely affect the stability.

The effort involved in the actual programming and solution of Egs. (D-8) -
(D-10) is greatly reduced, and the computer storage requirements are halved
by subtracting Eg. (D-8) from Eq. (D-9) and Eq. (D-9) from Eq. (D-10), so
that Eqs. (D-9) and (D-10) have the following simplified form:

E"(_%f_)z 50 (6" (D-11)
" ($*Z_1 4;**) 5 (5..‘_ 4;“) o

<K

For+£hree spatial dimensions ¢ represents the solution at tims*(n+l),
- ; for two spatial dimensions Eq. (D-12) is eliminated and 3 represents

the solution.

On examination, it can be seen that the difference equations (D-8), (D-11),
(D-12) are linear in the *-level quantities. At the k%P step in the procedure
there are m equations at each grid point (x;, xp, x3); because of the spatial
difference operators (8 and §, ) these equations contain the dependent vari-
ables at Xy and at each of the two adjacent grid points in the Xy-direction.
Consequently, the difference equations must be solved as an implicit system.

It should be recognized that upon application at a successive number of grid
points, xy, eagp(ﬁguation gégergggg a blgg&;tridiagonal system of algebraic
equations for ¢ (eees 0, @8 , 0 ¢ FOR K = 1, 2, 3). After appro-
priate treatment of boundary conditions, each system can be solved efficiently
using a standard block elimination method such as the matrix factorization
method. The method used in the present study is closely related to the

matrix factorization method and simply consists of Gaussian elimination for
a tridiagonal matrix, but where the elements of the tridiagonal matrix are
(mxm) submatrices rather than scalars, where m is the number of governing

equations.




The solution procedure for a single time step is as follows:

(1) During the first step of the ADI procedure, Eq. (D-8) is applied at
successive X,-direction rows of grid points to provide one-dimensional
implicit systems of equations. These systems are generated by the
operator (IP/At-ﬁ?). The implicit systems can be arranged in block-
tridiagonal form and solved as indicated previously. Since there
are m governing equations, the block-tridiagonal systems have
(mxm) square ma.rices as the block elements.

Although this discussion has assumed the grids to be uniform, extension
to nonuniform grids is straightfcrward. When a Roberts transformation is
used (see Egqs. (41) - (43)), the first and second derivatives for unequally
spaced grid points still le .d to three point difference operators. Thus the
resulting form of the matrices is unchanged and the solution procedure is
identical to that used for the equally spaced case.
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